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ABSTRACT
This paper presents an alternative method to predict expected mean values and standard deviations of embankment settlement, as
function of time. The method is based on both prior assumptions regarding expected means and standard deviations of settlement pa-
rameters and computation model uncertainty, as well as actually observed settlement behavior, e.g. during the construction stage, ap-
plying a Bayesian updating concept. Potential applications concern e.g. design of a monitoring strategy and philosophy. The method
is still under development, however the first results, demonstrated in this paper, look promising.

RÉSUMÉ
Cet article présente une méthode alternative pour prédire les valeurs moyennes et les écarts-types prévus pour le tassement d’un rem-
blai, en fonction du temps. La méthode est basée sur deux hypothèses préalables concernant les paramètres de tassement moyen et
d’écart-type et l’incertitude du modèle de calcul, ainsi que le comportement de tassement effectivement observé, par exemple en ap-
pliquant le concept bayesien en cours de construction. Les applications potentielles concernent par exemple la conception de la straté-
gie et de la philosophie de l’auscultation. Bien que la méthode soit encore en cours de développement, les premiers résultats présentés
dans cet article apparaissent prometteurs.

of this approach is that uncertainty estimates in the long term
predictions are affected by observations, but only as far as the 
observations are meaningful for the parameter in question. It is
believed that this approach yields more reliable and likely less
optimistic, re-estimates of uncertainties of long term settlement
predictions.

1 INTRODUCTION

Accurate prediction of long term settlements of embankments,
raised for road or railway construction or river flood defenses is
of significant importance for life cycle cost analysis and deci-
sion making about the design. Yet long term settlement predic-
tion usually suffers from substantial uncertainty, due to limited
information on key parameters, variability of these parameters
and uncertainty involved in the prediction model. It is widely
recognized that monitoring of settlement behavior during em-
bankment construction provides additional information which 
may be helpful to adapt long term settlement prediction,  possi-
bly necessitating revision of road or railway foundation design
or, in the case of flood levees, adaptation of additional crest
height, needed for compensation of settlement at the long term.

The method is still under development and as such this paper
reports ongoing research. However from the results obtained
until yet, the method seems promising.

In the sequel, attention will be first focused at the mathe-
matical background of the method, followed by an examples of
computation results. The mathematical background has been set 
up in a general way, because it is believed that the method may
be useful in a wider field of process monitoring than settlements
only.

Methods used for updating of key parameters for settlement
prediction are frequently based on back analysis or inverse pa-
rameter modeling, based on observed settlement behavior dur-
ing embankment construction. Application of a Bayesian frame-
work for this purpose yields the so-called weighted least squares
method. This method minimizes not only the residuals between
measurements and predictions, but also the residuals between
the initial and updated estimate of the mean value of the key pa-
rameters.  The resulting updated key parameters can be applied
to determine a best guess prediction of long term settlements.

2 THE BAYESIAN FRAMEWORK

A process consists of a set of mutually related characteristics.
For instance, the behavior of an embankment is characterized by
settlement, stress, pore pressure, etc. These characteristics are
piled into a process vector, indicated by z:
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where t  is the elapsed time and a is a vector of parameters in-
volved in the computation model, including computation model 
uncertainty parameters.

Least squares or weighted least squares approaches allow for
estimation of prediction uncertainties, based on analysis of re-
siduals between observations and updated predictions. It is in-
tuitively felt, however, that observations of only a small part of 
the settlement process provide poor information about parame-
ters which essentially govern only the long term part of the
process. Relying on residuals of the fitting procedure only, may
therefore lead to significant underestimation of long term uncer-
tainty margins.

The elements of the parameter vector a may or may not be
correlated. Therefore, a covariance matrix is assumed:

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=

)(a)a(a)a(a

)a(a)(aa(a

)a(a)a(a)a

N
2

nN1N

Nnn
2

1n

N1n11
2

a

...,cov...,cov
.........

,cov......),cov
.........

,cov...,cov...(

σ

σ

σ

C
(2)

This paper describes an alternative approach for determina-
tion of uncertainty margins using short time observations, by a
Bayesian type of updating of long term predictions. Key feature
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The Jacobian type matrix J consists of derivatives of the 

Besides uncertainty of the parameters, the vectors of meas-
urements and predictions z will usually show a dis-

tinction. This is due to measurement errors, reflected by the vec-
tor s.
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Figure 1: Embankment construction stages and subsoil profile
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Figure 2: Measured crest height of the embankment vs time

prediction with respect to the parameters a . Equation (6)

gives the weighted least squares expression that has to be mini-
mized. Equation (7) gives the direct parameter update in case of
a linear relationship between prediction and parameters. Equa-
tion (8) gives the iterative parameter update in case of a nonlin-
ear relationship.
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The addition of the weighted residuals between initial and
updated parameter values increases robustness of the least 
squares method. The robustness is improved further by combi-
nation with the Levenberg-Marquardt method (Levenberg, 
1944), (Marquardt, 1963).

4 UPDATING OF PREDICTION COVARIANCES

The prior prediction of the covariance of settlement vector z is
given by equation (9). 

TJCJC az = (9)

Now assume that J  is determined at the updated mean val-
ues of the parameters, and that it consists of a first part for the
measurements point of time t and an additional part with the

prediction points of time t . Then equation (9) may be rewrit-

ten into equation (10), with an added contribution of C  for
the measurement time points. The posterior covariance
prediction for all prediction points of time is finally given by
equation (11).
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C (10)where mt is the vector with M measurement points of time and
s is a vector of zero mean normally distributed random vari-
ables. The covariance of the parameters is therefore supple-
mented with covariances of the measurement errors.
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Note that the measurements itself are not explicitly involved
in the expression. However, the goodness of fit (Larsen, 1986)
can be used to determine the posterior values of the variance in
the covariance matrix .sC
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Linearization of equation (3) yields: The diagonal terms of the resulting covariance (11) will be 
applied to determine the posterior uncertainty margin of the
predicted settlements, given the measured settlement data.sJaz +=m , (5))(pa azJ ∇=
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Figure 3: Predicted settlements (expected mean values) before updating
based on monitoring data 

Figure 4: Predicted settlements (expected mean values) after updating
based on monitoring data 
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Figure 5: standard deviation of the prediction as function of time for 8 
measurement time points
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Figure 6: standard deviation of the prediction as function of time for 46 
measurement time points

mined according to equation (12) and equals 0.042. This quanti-
tity has up to now been taken to be a measure for assessment of
the measurement error, however, this is by no means an obvious 
choice.

In figure 5 the standard deviation (square root of the vari-
ance) is plotted against time, using only the first eight meas-
urement time points. Figure 6 shows the standard deviation us-
ing all 46 measurement points of time.

5 EXAMPLE

Embankments are subjected to long term creep behavior of the
subsoil. Calculation results in predictions for settlements, pore
pressures and effective stresses. Especially, the uncertainty of
the final settlements is a point of concern. Thereto, settlements
are monitored during and after construction. Sometimes pore 
pressures are monitored, too. These measurements are applied
to reduce the uncertainty of the predictions. In the example it
will be shown in how far the uncertainty margins will be re-
duced due to monitoring of settlements.

The time points of the measurements are represented by red
diamonds. The lines represent different values for the model
imperfection or measurement error. These values are indicated
at the right hand side. The (conditional) standard deviation is
determined, provided there is a certain agreement between pre-
diction and measurement. It makes only sense for points of time 
beyond the measurements. However, from theoretical point of
view, an uncertainty bound for the measurements, based on the
measurements, is interesting.

The geometry of the example is shown in figure 1. The
subsoil consists of different soft soil layers, which will settle
due to the weight of the embankment raise (figure 2). The set-
tlements are determined along a vertical, using the Isotache
model (Den Haan, 2000). The special excess pore pressure 
model includes the influence of vertical drains (Sellmeijer, 
2002). Initial estimates of the compression parameters are de-
termined from correlations with the saturated densities. The
standard deviations are obtained from a regional collection of
soil data. Figure 3 shows the resulting settlement pattern of the
settlements using the initial parameters. The green lines indicate
the settlement that would occur without further change of load-
ing. The red dots indicate the measured settlements. Figure 4
shows the predicted settlements after fitting with the weighted
least squares method. The fit was executed with 5 independent
fit parameters, being multiplication factors for the parameters of
all separate layers. The estimate for the goodness of fit is deter-

Figures 5 and 6 demonstrate clearly the influence the magni-
tude of the assumed measurement errors and the influence of the
number of observed measuring data. Large measurement errors
diminish the influence of observed data, i.e. predictions of set-
tlements can hardly be improved by monitoring of the settle-
ment process. For small measurement errors it can be seen from
figures 5 and 6 that variances of uncertainties of predictions of
long term settlement drastically decrease as the number of ob-
servations increase. In this example no additional computation
model imperfection has been taken into account.

6 CONCLUDING REMARKS 

The Bayesian approach to determine variances of uncertainty
margins of settlement predictions, accounting for monitoring
data, is complementary to the usually applied weighted least
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squares approach for (inverse) parameter assessment, based on 
monitoring data. Uncertainty of long term settlement prediction, 
and how it is reduced by monitoring, is a key factor in the deci-
sion about whether or not to install monitoring equipment and, 
if, for how long the settlement process should be monitored. 
The example shown in this paper demonstrates clearly the influ-
ence of the number of measuring data in time on the uncertainty 
margins of long term predictions of settlements. It appears that 
the assumptions made about model imperfections and measur-
ing errors have a significant influence. It is not obvious yet how 
to objectively assess these parameter; this needs further re-
search. 
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