







## Health Assessment of Levees Using Remote Sensing and Field Monitoring

## M. Zeghal, T. Abdoun, B. Yazici (Rensselaer Polytechnic Institute) A. Marr (Geocomp)

International Workshop on Remote Sensing for Disaster Response September 15-16, 2011



## Acknowledgements

Four-Year Project: Development of a Multiscale Monitoring and Health Assessment Framework for Effective Management of Levees and Flood-Control Infrastructure Systems-TIP supported

#### **Joint Venture**

Rensselaer Polytechnic Institute (M. Zeghal, T. Abdoun, B. Yazici)Geocomp (A. Marr)

## Overview

- Introduction
- Vision and project overview
- Remote sensing (InSAR)
- Field Monitoring
- Multi-scale identification and health assessment
- Concluding remarks

## Introduction

 Integrity and reliability of flood-control infrastructure (levees, earthen dams, etc.) essential components of homeland safety

- Aging and deteriorating flood-control infrastructure:
  - ASCE's 2009 Report Card: a grade of D to dams and a grade of D<sup>-</sup> to levees

## Motivation



## Health Assessment: Current State-of-the-Practice

- Levee health assessed based on visual inspection
  - Primarily periodic site visits (monthly to annually and more)
  - Surface information (incomplete and mostly qualitative
  - Focus on components
- Provides
  - Limited damage or weakness detection capability
  - Inconclusive health assessment
  - Limited predictability of overall system performance



## Vision



## Vision

Sensor-Aided Model-Based Approach:

- Monitoring:
  - Global: Remote sensing (InSAR)
  - Local: Shape-Acceleration-Pore Pressure Array
  - Bridging: GPS
- Health Assessment
  - Multi-scale (global, intermediate and local)
    model-based framework

## **Remote Sensing**

#### **Objectives:**

- Monitor large areas of levee system (10s of sq. kms)
  - Obtain few meters/pixel resolution for observed area
- Estimate deformation in levee structures with millimeter accuracy
  - <u>Interferometric Synthetic Aperture Radar (InSAR)</u>
- Estimate near surface moisture content
  - <u>Polarimetric Synthetic Aperture Radar (PolSAR)</u>

## SAR: Synthetic Aperture Radar

 Large Synthetic antenna obtained using history of radar echoes generated during spacecraft forward motion SAR Antenna



## **Differenctial InSAR: DInSAR**

Generates (using 2 or more SAR Interference images):



Image courtesy H. Zebker

- digital elevation maps
- surface deformation



## **Radar Satellites**



# **SAR Imaging Modes**

- Strip map
  - "Average" coverage area
- Scan SAR
  - Increased swath width
  - Reduced resolution and signal-to-noise ratio
- Spotlight
  - Reduced swath width
  - Increased resolution



## TerraSAR-X (9.67 GHz)

#### • SpotLight:

1.8m x 3.4m resolution scene size 10 km (width) x 5 km (length)

#### • StripMap:

3.5m x 8.0m resolution scene size 30 km (width) x 50 km (length)

#### • ScanSAR:

18m x 18m resolution scene size 100 km (width) x 150 km (length) **"Sampling rate" every 11 days** 



## **PSInSAR to address Challenges in DInSAR**

PSInSAR (persistent scatter) used to address lack of coherence due to:

- Geometric decorrelation Satellite must be as close as possible to the same orbital position when images are acquired over time
- **Temporal decorrelation** Movement of scatterers or temporal change in the dielectric properties
  - Vegetation growth
  - Change in soil moisture, snow cover, etc.
- Atmospheric effects dispersion
  - Change in temperature, pressure, water vapor
- Sparsity of temporal data

## Coherence

#### DInSAR



Average value

0.5~0.6

0.2

#### **PSInSAR**



0.85~0.9

Coherence map: TSX data

0.9

## **Elevation and Displacement Rate**



Elevation (m)

#### Rate of subsidence (mm/year)<sub>17</sub>

## **Settlement Rate**



column, line: 544 142 image RGB: 116 133 45 point index: 187 col: 544 line: 143



height (m): 7.636 deformation rate (mm/y): -5.674 deformation rate uncertainty (mm/y): 0.681

## **Settlement Rate**



TerraSAR-XStripmap 2009March13 - 2010October28 19 images

## Improving Accuracy and Space Resolution

### Reflectors: improves signal intensity







## **Field Instrumentation**



•Shape acceleration pore pressure (SAP) array

- -- Higher resolution
- -- Higher sampling rate (seconds to minutes)
- •GPS array
  - -- Higher sampling rate (daily to few hours)
  - -- cost effective (~ \$1500)



# Health Assessment



## Health Assessment Rationale

- Calibrated baseline levee model
  - a priori information
- Updated levee models
  - baseline model
  - new measurements
- Evaluation of health status and identification of damage (if any)
  - discrepancies between baseline and updated models
  - other information

## **Global-Scale Health Assessment**



$$\frac{\partial \mathbf{\tau}}{\partial s} - \mathbf{q}^{\text{ext}} = \mathbf{0}$$

 $\boldsymbol{\tau} = \boldsymbol{\tau}(\tau_1, \tau_2)$ 

 $\mathbf{q}^{\text{ext}}$ : All external loads

- Fine global analysis:
- Spotlight InSAR measurements
- Neural network and 3D simple models
- Location of displacement estimated using InSAR
- GPS sensor location

#### Intermediate Analysis:

- Spotlight mode InSAR measurements
- GPS measurements (higher sampling rate)
- 2D refined model of critical section



- Localization
  - Neural networks
- Parameter Identification
  - Localization used to constrain geometry of possible weak zones.
  - Optimization algorithms used to identify "geometry" of weak zones and to quantify associated stiffness properties.
- Health assessment
  - Based on in internal (strain) energy of weak zone(s)

## Localization

Neural networks trained to identify possible locations of weak zones given surface displacements/deformation



# Observed displacements Location of weak zone

### Localization Results (Example)





## **Localization Results**

# 0.5 mm uncertainty in displacement readings

| Σ      |  |
|--------|--|
| 680    |  |
| ate    |  |
| о<br>р |  |
| ifie   |  |
| enti   |  |

σ

1

2

3

4

5

6

Correct classifications for Independent Test: 86%

correct classifications for displacements > 2 mm: 93.5%

| <b>94</b> | <b>2</b>   | <b>2</b>  | <b>1</b>   | <b>0</b>   | <b>0</b>   | 94.9% |
|-----------|------------|-----------|------------|------------|------------|-------|
| 13.1%     | 0.3%       | 0.3%      | 0.1%       | 0.0%       | 0.0%       | 5.1%  |
| <b>8</b>  | <b>109</b> | <b>22</b> | <b>0</b>   | <b>0</b>   | <b>3</b>   | 76.8% |
| 1.1%      | 15.1%      | 3.1%      | 0.0%       | 0.0%       | 0.4%       | 23.2% |
| <b>10</b> | <b>9</b>   | <b>91</b> | <b>8</b>   | <b>6</b>   | <b>1</b>   | 72.8% |
| 1.4%      | 1.3%       | 12.6%     | 1.1%       | 0.8%       | 0.1%       | 27.2% |
| <b>7</b>  | <b>0</b>   | <b>3</b>  | <b>107</b> | <b>2</b>   | <b>1</b>   | 89.2% |
| 1.0%      | 0.0%       | 0.4%      | 14.9%      | 0.3%       | 0.1%       | 10.8% |
| <b>0</b>  | <b>0</b>   | <b>0</b>  | <b>4</b>   | <b>111</b> | <b>2</b>   | 94.9% |
| 0.0%      | 0.0%       | 0.0%      | 0.6%       | 15.4%      | 0.3%       | 5.1%  |
| <b>1</b>  | <b>0</b>   | <b>2</b>  | <b>0</b>   | <b>1</b>   | <b>113</b> | 96.6% |
| 0.1%      | 0.0%       | 0.3%      | 0.0%       | 0.1%       | 15.7%      | 3.4%  |
| 78.3%     | 90.8%      | 75.8%     | 89.2%      | 92.5%      | 94.2%      | 86.8% |
| 21.7%     | 9.2%       | 24.2%     | 10.8%      | 7.5%       | 5.8%       | 13.2% |
| 1         | 2          | 3         | 4          | 5          | 6          |       |

**Actual Category** 

#### Identification of stiffness parameters



Location of InSAR displacement
 O GPS sensor location



## **Energy-based Safety Assessment**



33

## Health Assessment: Quantification

Quantification based on progression of:

- Degradation of stiffness and strength parameters
- Weakened zones and associated energy

## Local-Scale Health Assessment

**CMP-**Control Motion Approach: prescribed motion at all sensor "node" locations (Elmekati and Zeghal)

**CMP-Finite Element formulation** 



## **Concluding Remarks**

Health assessment framework:

- Sensing tools
  - Remote sensing
  - SAP
  - GPS
- Local-Intermediate-Global health assessment
  - Provides an evaluation of levee condition
  - Provides amble time to implement required repairs before major events (hurricanes, floods, ...)
  - Enables resilient of flood control levee systems (lower risk of having a catastrophic failure)
- Provides an automated monitoring and data collection program that could be used to organize and implement a rehabilitation program.

## Questions?

