Health Assessment of Levees Using Remote Sensing and Field Monitoring

M. Zeghal, T. Abdoun, B. Yazici
(Rensselaer Polytechnic Institute)
A. Marr (Geocomp)

International Workshop on Remote Sensing for Disaster Response
September 15-16, 2011
Four-Year Project: Development of a Multiscale Monitoring and Health Assessment Framework for Effective Management of Levees and Flood-Control Infrastructure Systems - TIP supported

Joint Venture

Rensselaer Polytechnic Institute (M. Zeghal, T. Abdoun, B. Yazici)

Geocomp (A. Marr)
Overview

• Introduction
• Vision and project overview
• Remote sensing (InSAR)
• Field Monitoring
• Multi-scale identification and health assessment
• Concluding remarks
Introduction

• Integrity and reliability of flood-control infrastructure (levees, earthen dams, etc.) essential components of homeland safety

• Aging and deteriorating flood-control infrastructure:
 – ASCE's 2009 Report Card: a grade of D to dams and a grade of D- to levees
Motivation
Health Assessment: Current State-of-the-Practice

• Levee health assessed based on visual inspection
 – Primarily periodic site visits (monthly to annually and more)
 – Surface information (incomplete and mostly qualitative)
 – Focus on components

• Provides
 – Limited damage or weakness detection capability
 – Inconclusive health assessment
 – Limited predictability of overall system performance
Vision

Sensor-Aided Model-Based Approach:

• Monitoring:
 – Global: Remote sensing (InSAR)
 – Local: Shape-Acceleration-Pore Pressure Array
 – Bridging: GPS

• Health Assessment
 – Multi-scale (global, intermediate and local) model-based framework
Remote Sensing

Objectives:

• Monitor large areas of levee system (10s of sq. kms)
 – Obtain few meters/pixel resolution for observed area

• Estimate deformation in levee structures with millimeter accuracy
 – Interferometric Synthetic Aperture Radar (InSAR)

• Estimate near surface moisture content
 – Polarimetric Synthetic Aperture Radar (PolSAR)
SAR: Synthetic Aperture Radar

- Large **Synthetic** antenna obtained using history of radar echoes generated during spacecraft forward motion

Image courtesy of Power et al. (2006)
Differential InSAR: DInSAR

Generates (using 2 or more SAR Interference images):

- digital elevation maps
- surface deformation

Image courtesy of H. Zebker

Image courtesy of Fugro
Radar Satellites

ERS1 & ERS2

ENVISAT

RADARSAT-1

RADARSAT-2

ALOS-PALSAR

TerraSAR-X

Tandem-X

RCM Constellation

Sentinel 1

Sentinel 2

SAOCOM

CosmoSky-Med Constellation
SAR Imaging Modes

• **Strip map**
 – “Average” coverage area

• **Scan SAR**
 – **Increased** swath width
 – **Reduced** resolution and signal-to-noise ratio

• **Spotlight**
 – **Reduced** swath width
 – **Increased** resolution
TerraSAR-X (9.67 GHz)

• **SpotLight:**
 1.8m x 3.4m resolution
 scene size 10 km (width) x 5 km (length)

• **StripMap:**
 3.5m x 8.0m resolution
 scene size 30 km (width) x 50 km (length)

• **ScanSAR:**
 18m x 18m resolution
 scene size 100 km (width) x 150 km (length)

“Sampling rate” every 11 days
PSInSAR to address Challenges in DInSAR

PSInSAR (persistent scatter) used to address lack of coherence due to:

- **Geometric decorrelation** – Satellite must be as close as possible to the same orbital position when images are acquired over time

- **Temporal decorrelation** – Movement of scatterers or temporal change in the dielectric properties
 - Vegetation growth
 - Change in soil moisture, snow cover, etc.

- **Atmospheric effects** – dispersion
 - Change in temperature, pressure, water vapor

- **Sparsity of temporal data**
Coherence

DInSAR

PSInSAR

Coherence map: TSX data

Average value

0.5~0.6

0.2 0.9

Average value

0.85~0.9

0.7 1
Elevation and Displacement Rate

Elevation (m)

Rate of subsidence (mm/year)
height (m): 7.636
deformation rate (mm/y): -5.674
deformation rate uncertainty (mm/y): 0.681
Settlement Rate

Deformation Rate

-8.2 (Point A)
-7.6
-5.0 ~ -6.2
-3.5 ~ -4.9

mm/year

TerraSAR-X Stripmap
2009 March 13 - 2010 October 28
19 images
Improving Accuracy and Space Resolution

Reflectors: improves signal intensity

PSInSAR

SqueeSAR™ (TRE)
Field Instrumentation

- Shape acceleration pore pressure (SAP) array
 - Higher resolution
 - Higher sampling rate (seconds to minutes)
- GPS array
 - Higher sampling rate (daily to few hours)
 - Cost effective (~ $1500)
Adaptive multi-scale:

- **Global**
 - InSAR data (strip mode)
 - InSAR data (spotlight mode)

- **Intermediate**
 - InSAR data (spotlight mode)
 - GPS data

- **Local**
 - Shape-acceleration-Pore Pressure data
 - GPS data
Health Assessment Rationale

- Calibrated baseline levee model
 - a priori information
- Updated levee models
 - baseline model
 - new measurements
- Evaluation of health status and identification of damage (if any)
 - discrepancies between baseline and updated models
 - other information
Coarse global analysis:

• Stripmap InSAR measurements
• 2D shear beam

\[
\frac{\partial \tau}{\partial s} - q^{\text{ext}} = 0
\]

\[\tau = \tau(\tau_1, \tau_2)\]

\[q^{\text{ext}}: \text{All external loads}\]
Intermediate-Scale Health Assessment

Fine global analysis:
- Spotlight InSAR measurements
- Neural network and 3D simple models

- Location of displacement estimated using InSAR
- GPS sensor location
Intermediate-Scale Health Assessment

Intermediate Analysis:
- Spotlight mode InSAR measurements
- GPS measurements (higher sampling rate)
- 2D refined model of critical section

![Diagram of geological layers with points indicating InSAR displacement and GPS sensor locations.]

- Weak soil
- Location of InSAR displacement
- GPS sensor location
Intermediate-Scale Health Assessment

- **Localization**
 - Neural networks

- **Parameter Identification**
 - Localization used to constrain geometry of possible weak zones.
 - Optimization algorithms used to identify “geometry” of weak zones and to quantify associated stiffness properties.

- **Health assessment**
 - Based on internal (strain) energy of weak zone(s)
Intermediate-Scale Health Assessment

Localization

Neural networks trained to identify possible locations of weak zones given surface displacements/deformation.
Intermediate-Scale Health Assessment

Localization Results (Example)

- **LD** – Left Deep
- **LS** – Left Shallow
- **RI** – Right Intermediate
Localization Results

<table>
<thead>
<tr>
<th>Identified Category</th>
<th>Actual Category</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 mm uncertainty in displacement readings</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>94</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>94.9% 5.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>109</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>76.8% 23.2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>9</td>
<td>91</td>
<td>8</td>
<td>6</td>
<td>1</td>
<td>72.8% 27.2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>0</td>
<td>3</td>
<td>107</td>
<td>2</td>
<td>1</td>
<td>89.2% 10.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>111</td>
<td>2</td>
<td>94.9% 5.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>113</td>
<td>96.6% 3.4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Correct classifications for Independent Test:
86%
correct classifications for displacements > 2 mm:
93.5%
Intermediate-Scale Health Assessment

Identification of stiffness parameters
Intermediate-Scale Health Assessment

Identification Algorithm

Initial Model

Model after weakening

\[p_{\text{optm}} \rightarrow \min_{p} \| \Delta d \| \]

Parameter Identification

Weakening scenario:
Energy-based Safety Assessment
Health Assessment: Quantification

Quantification based on progression of:

• Degradation of stiffness and strength parameters
• Weakened zones and associated energy
Local-Scale Health Assessment

CMP-Control Motion Approach: prescribed motion at all sensor “node” locations (Elmekati and Zeghal)

CMP-Finite Element formulation
Concluding Remarks

Health assessment framework:

• Sensing tools
 – Remote sensing
 – SAP
 – GPS

• Local-Intermediate-Global health assessment
 – Provides an evaluation of levee condition
 – Provides ample time to implement required repairs before major events (hurricanes, floods, ...)
 – Enables resilient of flood control levee systems (lower risk of having a catastrophic failure)

• Provides an automated monitoring and data collection program that could be used to organize and implement a rehabilitation program.
Questions?